Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
JMIR Public Health Surveill ; 7(4): e25695, 2021 04 28.
Article in English | MEDLINE | ID: covidwho-2141304

ABSTRACT

BACKGROUND: The COVID-19 pandemic has severely impacted Europe, resulting in a high caseload and deaths that varied by country. The second wave of the COVID-19 pandemic has breached the borders of Europe. Public health surveillance is necessary to inform policy and guide leaders. OBJECTIVE: This study aimed to provide advanced surveillance metrics for COVID-19 transmission that account for weekly shifts in the pandemic, speed, acceleration, jerk, and persistence, to better understand countries at risk for explosive growth and those that are managing the pandemic effectively. METHODS: We performed a longitudinal trend analysis and extracted 62 days of COVID-19 data from public health registries. We used an empirical difference equation to measure the daily number of cases in Europe as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: New COVID-19 cases slightly decreased from 158,741 (week 1, January 4-10, 2021) to 152,064 (week 2, January 11-17, 2021), and cumulative cases increased from 22,507,271 (week 1) to 23,890,761 (week 2), with a weekly increase of 1,383,490 between January 10 and January 17. France, Germany, Italy, Spain, and the United Kingdom had the largest 7-day moving averages for new cases during week 1. During week 2, the 7-day moving average for France and Spain increased. From week 1 to week 2, the speed decreased (37.72 to 33.02 per 100,000), acceleration decreased (0.39 to -0.16 per 100,000), and jerk increased (-1.30 to 1.37 per 100,000). CONCLUSIONS: The United Kingdom, Spain, and Portugal, in particular, are at risk for a rapid expansion in COVID-19 transmission. An examination of the European region suggests that there was a decrease in the COVID-19 caseload between January 4 and January 17, 2021. Unfortunately, the rates of jerk, which were negative for Europe at the beginning of the month, reversed course and became positive, despite decreases in speed and acceleration. Finally, the 7-day persistence rate was higher during week 2 than during week 1. These measures indicate that the second wave of the pandemic may be subsiding, but some countries remain at risk for new outbreaks and increased transmission in the absence of rapid policy responses.


Subject(s)
COVID-19/epidemiology , Public Health Surveillance , Europe/epidemiology , Humans , Longitudinal Studies
2.
J Med Internet Res ; 23(2): e26081, 2021 02 09.
Article in English | MEDLINE | ID: covidwho-1575190

ABSTRACT

BACKGROUND: The COVID-19 pandemic has had profound and differential impacts on metropolitan areas across the United States and around the world. Within the United States, metropolitan areas that were hit earliest with the pandemic and reacted with scientifically based health policy were able to contain the virus by late spring. For other areas that kept businesses open, the first wave in the United States hit in mid-summer. As the weather turns colder, universities resume classes, and people tire of lockdowns, a second wave is ascending in both metropolitan and rural areas. It becomes more obvious that additional SARS-CoV-2 surveillance is needed at the local level to track recent shifts in the pandemic, rates of increase, and persistence. OBJECTIVE: The goal of this study is to provide advanced surveillance metrics for COVID-19 transmission that account for speed, acceleration, jerk and persistence, and weekly shifts, to better understand and manage risk in metropolitan areas. Existing surveillance measures coupled with our dynamic metrics of transmission will inform health policy to control the COVID-19 pandemic until, and after, an effective vaccine is developed. Here, we provide values for novel indicators to measure COVID-19 transmission at the metropolitan area level. METHODS: Using a longitudinal trend analysis study design, we extracted 260 days of COVID-19 data from public health registries. We used an empirical difference equation to measure the daily number of cases in the 25 largest US metropolitan areas as a function of the prior number of cases and weekly shift variables based on a dynamic panel data model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: Minneapolis and Chicago have the greatest average number of daily new positive results per standardized 100,000 population (which we refer to as speed). Extreme behavior in Minneapolis showed an increase in speed from 17 to 30 (67%) in 1 week. The jerk and acceleration calculated for these areas also showed extreme behavior. The dynamic panel data model shows that Minneapolis, Chicago, and Detroit have the largest persistence effects, meaning that new cases pertaining to a specific week are statistically attributable to new cases from the prior week. CONCLUSIONS: Three of the metropolitan areas with historically early and harsh winters have the highest persistence effects out of the top 25 most populous metropolitan areas in the United States at the beginning of their cold weather season. With these persistence effects, and with indoor activities becoming more popular as the weather gets colder, stringent COVID-19 regulations will be more important than ever to flatten the second wave of the pandemic. As colder weather grips more of the nation, southern metropolitan areas may also see large spikes in the number of cases.


Subject(s)
COVID-19/epidemiology , Communicable Disease Control , COVID-19/prevention & control , COVID-19/transmission , Health Policy , Humans , Longitudinal Studies , Models, Statistical , Pandemics , Public Health , Public Health Surveillance , Registries , SARS-CoV-2 , United States/epidemiology
3.
JMIR Public Health Surveill ; 7(5): e25753, 2021 05 10.
Article in English | MEDLINE | ID: covidwho-1183763

ABSTRACT

BACKGROUND: The COVID-19 global pandemic has disrupted structures and communities across the globe. Numerous regions of the world have had varying responses in their attempts to contain the spread of the virus. Factors such as public health policies, governance, and sociopolitical climate have led to differential levels of success at controlling the spread of SARS-CoV-2. Ultimately, a more advanced surveillance metric for COVID-19 transmission is necessary to help government systems and national leaders understand which responses have been effective and gauge where outbreaks occur. OBJECTIVE: The goal of this study is to provide advanced COVID-19 surveillance metrics for Canada at the country, province, and territory level that account for shifts in the pandemic including speed, acceleration, jerk, and persistence. Enhanced surveillance identifies risks for explosive growth and regions that have controlled outbreaks successfully. METHODS: Using a longitudinal trend analysis study design, we extracted 62 days of COVID-19 data from Canadian public health registries for 13 provinces and territories. We used an empirical difference equation to measure the daily number of cases in Canada as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: We compare the week of February 7-13, 2021, with the week of February 14-20, 2021. Canada, as a whole, had a decrease in speed from 8.4 daily new cases per 100,000 population to 7.5 daily new cases per 100,000 population. The persistence of new cases during the week of February 14-20 reported 7.5 cases that are a result of COVID-19 transmissions 7 days earlier. The two most populous provinces of Ontario and Quebec both experienced decreases in speed from 7.9 and 11.5 daily new cases per 100,000 population for the week of February 7-13 to speeds of 6.9 and 9.3 for the week of February 14-20, respectively. Nunavut experienced a significant increase in speed during this time, from 3.3 daily new cases per 100,000 population to 10.9 daily new cases per 100,000 population. CONCLUSIONS: Canada excelled at COVID-19 control early on in the pandemic, especially during the first COVID-19 shutdown. The second wave at the end of 2020 resulted in a resurgence of the outbreak, which has since been controlled. Enhanced surveillance identifies outbreaks and where there is the potential for explosive growth, which informs proactive health policy.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Public Health Surveillance/methods , Canada/epidemiology , Humans , Longitudinal Studies
4.
J Med Internet Res ; 23(2): e25454, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-1058365

ABSTRACT

BACKGROUND: The COVID-19 pandemic has had a profound global impact on governments, health care systems, economies, and populations around the world. Within the East Asia and Pacific region, some countries have mitigated the spread of the novel coronavirus effectively and largely avoided severe negative consequences, while others still struggle with containment. As the second wave reaches East Asia and the Pacific, it becomes more evident that additional SARS-CoV-2 surveillance is needed to track recent shifts, rates of increase, and persistence associated with the pandemic. OBJECTIVE: The goal of this study is to provide advanced surveillance metrics for COVID-19 transmission that account for speed, acceleration, jerk, persistence, and weekly shifts, to better understand country risk for explosive growth and those countries who are managing the pandemic successfully. Existing surveillance coupled with our dynamic metrics of transmission will inform health policy to control the COVID-19 pandemic until an effective vaccine is developed. We provide novel indicators to measure disease transmission. METHODS: Using a longitudinal trend analysis study design, we extracted 330 days of COVID-19 data from public health registries. We used an empirical difference equation to measure the daily number of cases in East Asia and the Pacific as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: The standard surveillance metrics for Indonesia, the Philippines, and Myanmar were concerning as they had the largest new caseloads at 4301, 2588, and 1387, respectively. When looking at the acceleration of new COVID-19 infections, we found that French Polynesia, Malaysia, and the Philippines had rates at 3.17, 0.22, and 0.06 per 100,000. These three countries also ranked highest in terms of jerk at 15.45, 0.10, and 0.04, respectively. CONCLUSIONS: Two of the most populous countries in East Asia and the Pacific, Indonesia and the Philippines, have alarming surveillance metrics. These two countries rank highest in new infections in the region. The highest rates of speed, acceleration, and positive upwards jerk belong to French Polynesia, Malaysia, and the Philippines, and may result in explosive growth. While all countries in East Asia and the Pacific need to be cautious about reopening their countries since outbreaks are likely to occur in the second wave of COVID-19, the country of greatest concern is the Philippines. Based on standard and enhanced surveillance, the Philippines has not gained control of the COVID-19 epidemic, which is particularly troubling because the country ranks 4th in population in the region. Without extreme and rigid social distancing, quarantines, hygiene, and masking to reverse trends, the Philippines will remain on the global top 5 list of worst COVID-19 outbreaks resulting in high morbidity and mortality. The second wave will only exacerbate existing conditions and increase COVID-19 transmissions.


Subject(s)
COVID-19/epidemiology , Asia, Southeastern/epidemiology , Australasia/epidemiology , COVID-19/transmission , Asia, Eastern/epidemiology , Health Policy , Humans , Indonesia/epidemiology , Longitudinal Studies , Malaysia/epidemiology , Pandemics , Philippines/epidemiology , Polynesia/epidemiology , Public Health , Public Health Surveillance , Registries , SARS-CoV-2
5.
J Med Internet Res ; 22(12): e24286, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-978988

ABSTRACT

BACKGROUND: The emergence of SARS-CoV-2, the virus that causes COVID-19, has led to a global pandemic. The United States has been severely affected, accounting for the most COVID-19 cases and deaths worldwide. Without a coordinated national public health plan informed by surveillance with actionable metrics, the United States has been ineffective at preventing and mitigating the escalating COVID-19 pandemic. Existing surveillance has incomplete ascertainment and is limited by the use of standard surveillance metrics. Although many COVID-19 data sources track infection rates, informing prevention requires capturing the relevant dynamics of the pandemic. OBJECTIVE: The aim of this study is to develop dynamic metrics for public health surveillance that can inform worldwide COVID-19 prevention efforts. Advanced surveillance techniques are essential to inform public health decision making and to identify where and when corrective action is required to prevent outbreaks. METHODS: Using a longitudinal trend analysis study design, we extracted COVID-19 data from global public health registries. We used an empirical difference equation to measure daily case numbers for our use case in 50 US states and the District of Colombia as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: Examination of the United States and state data demonstrated that most US states are experiencing outbreaks as measured by these new metrics of speed, acceleration, jerk, and persistence. Larger US states have high COVID-19 caseloads as a function of population size, density, and deficits in adherence to public health guidelines early in the epidemic, and other states have alarming rates of speed, acceleration, jerk, and 7-day persistence in novel infections. North and South Dakota have had the highest rates of COVID-19 transmission combined with positive acceleration, jerk, and 7-day persistence. Wisconsin and Illinois also have alarming indicators and already lead the nation in daily new COVID-19 infections. As the United States enters its third wave of COVID-19, all 50 states and the District of Colombia have positive rates of speed between 7.58 (Hawaii) and 175.01 (North Dakota), and persistence, ranging from 4.44 (Vermont) to 195.35 (North Dakota) new infections per 100,000 people. CONCLUSIONS: Standard surveillance techniques such as daily and cumulative infections and deaths are helpful but only provide a static view of what has already occurred in the pandemic and are less helpful in prevention. Public health policy that is informed by dynamic surveillance can shift the country from reacting to COVID-19 transmissions to being proactive and taking corrective action when indicators of speed, acceleration, jerk, and persistence remain positive week over week. Implicit within our dynamic surveillance is an early warning system that indicates when there is problematic growth in COVID-19 transmissions as well as signals when growth will become explosive without action. A public health approach that focuses on prevention can prevent major outbreaks in addition to endorsing effective public health policies. Moreover, subnational analyses on the dynamics of the pandemic allow us to zero in on where transmissions are increasing, meaning corrective action can be applied with precision in problematic areas. Dynamic public health surveillance can inform specific geographies where quarantines are necessary while preserving the economy in other US areas.


Subject(s)
COVID-19/prevention & control , COVID-19/transmission , Public Health Surveillance , COVID-19/epidemiology , COVID-19/mortality , Humans , Longitudinal Studies , Pandemics/prevention & control , Pandemics/statistics & numerical data , Public Health , Registries , SARS-CoV-2 , United States/epidemiology
6.
J Med Internet Res ; 22(11): e24248, 2020 11 19.
Article in English | MEDLINE | ID: covidwho-934414

ABSTRACT

BACKGROUND: Since the novel coronavirus emerged in late 2019, the scientific and public health community around the world have sought to better understand, surveil, treat, and prevent the disease, COVID-19. In sub-Saharan Africa (SSA), many countries responded aggressively and decisively with lockdown measures and border closures. Such actions may have helped prevent large outbreaks throughout much of the region, though there is substantial variation in caseloads and mortality between nations. Additionally, the health system infrastructure remains a concern throughout much of SSA, and the lockdown measures threaten to increase poverty and food insecurity for the subcontinent's poorest residents. The lack of sufficient testing, asymptomatic infections, and poor reporting practices in many countries limit our understanding of the virus's impact, creating a need for better and more accurate surveillance metrics that account for underreporting and data contamination. OBJECTIVE: The goal of this study is to improve infectious disease surveillance by complementing standardized metrics with new and decomposable surveillance metrics of COVID-19 that overcome data limitations and contamination inherent in public health surveillance systems. In addition to prevalence of observed daily and cumulative testing, testing positivity rates, morbidity, and mortality, we derived COVID-19 transmission in terms of speed, acceleration or deceleration, change in acceleration or deceleration (jerk), and 7-day transmission rate persistence, which explains where and how rapidly COVID-19 is transmitting and quantifies shifts in the rate of acceleration or deceleration to inform policies to mitigate and prevent COVID-19 and food insecurity in SSA. METHODS: We extracted 60 days of COVID-19 data from public health registries and employed an empirical difference equation to measure daily case numbers in 47 sub-Saharan countries as a function of the prior number of cases, the level of testing, and weekly shift variables based on a dynamic panel model that was estimated using the generalized method of moments approach by implementing the Arellano-Bond estimator in R. RESULTS: Kenya, Ghana, Nigeria, Ethiopia, and South Africa have the most observed cases of COVID-19, and the Seychelles, Eritrea, Mauritius, Comoros, and Burundi have the fewest. In contrast, the speed, acceleration, jerk, and 7-day persistence indicate rates of COVID-19 transmissions differ from observed cases. In September 2020, Cape Verde, Namibia, Eswatini, and South Africa had the highest speed of COVID-19 transmissions at 13.1, 7.1, 3.6, and 3 infections per 100,0000, respectively; Zimbabwe had an acceleration rate of transmission, while Zambia had the largest rate of deceleration this week compared to last week, referred to as a jerk. Finally, the 7-day persistence rate indicates the number of cases on September 15, 2020, which are a function of new infections from September 8, 2020, decreased in South Africa from 216.7 to 173.2 and Ethiopia from 136.7 to 106.3 per 100,000. The statistical approach was validated based on the regression results; they determined recent changes in the pattern of infection, and during the weeks of September 1-8 and September 9-15, there were substantial country differences in the evolution of the SSA pandemic. This change represents a decrease in the transmission model R value for that week and is consistent with a de-escalation in the pandemic for the sub-Saharan African continent in general. CONCLUSIONS: Standard surveillance metrics such as daily observed new COVID-19 cases or deaths are necessary but insufficient to mitigate and prevent COVID-19 transmission. Public health leaders also need to know where COVID-19 transmission rates are accelerating or decelerating, whether those rates increase or decrease over short time frames because the pandemic can quickly escalate, and how many cases today are a function of new infections 7 days ago. Even though SSA is home to some of the poorest countries in the world, development and population size are not necessarily predictive of COVID-19 transmission, meaning higher income countries like the United States can learn from African countries on how best to implement mitigation and prevention efforts. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/21955.


Subject(s)
Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Health Policy , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Public Health Surveillance , Africa South of the Sahara/epidemiology , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/virology , Female , Humans , Male , Models, Biological , Pandemics , Pneumonia, Viral/virology , Registries , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL